Capturing Missing Links in Social Networks Using Vertex Similarity

نویسندگان

  • Hung-Hsuan Chen
  • Liang Gou
  • Xiaolong Zhang
  • C. Lee Giles
چکیده

The vertex similarity measure is a useful tool to discover and justify the relationship of vertices in a complex network. We propose the Relation Strength Similarity (RSS), a new vertex similarity measure that utilizes the network topology to discover similar vertices. Compared to other vertex similarity measures, RSS has the following advantages. First, it is an asymmetric metric which allows the measure to be used in more general social network applications. Second, it can be employed on a weighted network, in which the relation strength of two neighboring nodes can be explicitly expressed. Third, users could adjust the “discovery range” parameter for better performance based on their domain knowledge. Using coauthorship network as experimental data, our method outperforms other vertex similarity measures in terms of the ability to predict future coauthoring behavior among scholars.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Recent Links in FOAF Networks

For social networks, prediction of new links or edges can be important for many reasons, in particular for understanding future network growth. Recent work has shown that graph vertex similarity measures are good at predicting graph link formation for the near future, but are less effective in predicting further out. This could imply that recent links can be more important than older links in l...

متن کامل

Assessing Low-Intensity Relationships in Complex Networks

Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human interactions. In these networks with missing and spurious links, it is possible to refine the data...

متن کامل

A Novel Approach for Detecting Relationships in Social Networks Using Cellular Automata Based Graph Coloring

All the social networks can be modeled as a graph, where each roles as vertex and each relationroles as an edge. The graph can be show as G = [V;E], where V is the set of vertices and E is theset of edges. All social networks can be segmented to K groups, where there are members in eachgroup with same features. In each group each person knows other individuals and is in touch ...

متن کامل

Identifying missing relevant patent citation links by using bibliographic coupling in LED illuminating technology

This study uses bibliographic coupling to identify missing relevant patent links, in order to construct a comprehensive citation network. Missing citation links can be added by taking the missing relevant patent links into account. The Pareto principle is used to determine the threshold of bibliographic coupling strength, in order to identify the missing relevant patent links. Comparisons betwe...

متن کامل

Modeling Trust and Influence on Blogosphere using Link Polarity

There is a growing interest in exploring the role of social networks for understanding how communities and individuals spread influence. In a densely connected world where much of our communication happens online, social media and networks have a great potential in influencing our thoughts and actions. The key contribution of our work is generation of a fully-connected polar social network grap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012